摘要:大数据的概念可能不同的人会有不同的理解,我自己从08年开始从事大数据相关的工作,那个时候我们是觉得自己搞的是云计算和数据仓库,而到了2011、2012年的时候,国内大数据的概念才兴起来,之后就是炒了三年的概念。
因为从事这一方向,这几年不断会有人问我什么是大数据我一直都回答不好。在最近的几个月,我对这一概念思考的更多一些,结合看过的一些资料(如《大数据时代》、《数学之美》第二版、《硅谷之谜》、吴军的演讲材料等)和实际的经历,算是有了一些认识。与其说认识,还不如说是总结,换个角度看待这个问题,分为大数据概念和大数据思维。
我把大数据的概念总结为四个字:大、全、细、时。
大数据之大
我们先来看一组数据:
- 百度每天采集的用户行为数据有1.5PB以上
- 全国各地级市今天的苹果价格数据有2MB
- 1998年Google抓取的互联网页面共有47GB(压缩后)
- 一台风力发电机每天产生的振动数据有50GB
百度每天的行为数据1.5个PB够大吧我们毫无怀疑这是大数据。但全国各个地级市今天的苹果价格只有2MB大小,是典型的小数据吧但如果我们基于这个数据,做一个苹果分销的智能调度系统,这就是个牛逼的大数据应用了。Google在刚成立的时候,佩奇和布林下载了整个互联网的页面,在压缩后也就47GB大小,现在一个U盘都能装的下,但Google搜索显然是个大数据的应用。如果再来看一台风机每天的振动数据可能都有50GB,但这个数据只是针对这一台风机的,并不能从覆盖面上,起到多大的作用,这我认为不能叫大数据。
这里就是在强调大,是Big不是Large,我们强调的是抽象意义的大。
大数据之全
我们再来看关于美国大选的三次事件:
- 1936年《文学文摘》收集了240万份调查问卷,预测错误
- 新闻学教授盖洛普只收集了5万人的意见,预测罗斯福连任正确
- 2012年Nate Silver通过互联网采集社交、新闻数据,预测大选结果
《文学文摘》所收集的问卷有240万,绝对是够大的,但为什么预测错误了呢当时《文学文摘》是通过电话调查的,能够装电话的就是一类富人,这类人本身就有不同的政治倾向,调查的结果本身就是偏的。而盖洛普只收集了5万人的意见,但是他采用按照社会人群按照比例抽样,然后汇集总体结果,反而预测正确了。因为这次预测,盖洛普一炮而红,现在成了一个著名的调研公司。当然,后来盖洛普也有预测失败的时候。到了2012年,一个名不见经传的人物Nate Silver通过采集网上的社交、新闻数据,这是他预测的情况和真实的情况:
(图1 Nate Silver做的竞选预测)
两者是惊人的接近的。
从这点我是想强调要全量而不是抽样,大数据时代有了更好的数据采集手段,让获取全量数据成为可能。
大数据之细
在2013年9月,百度知道发布了一份《中国十大吃货省市排行榜》,在关于“××能吃吗”的问题中,宁夏网友最关心“螃蟹能吃吗”内蒙古、新疆和西藏的人最关心“蘑菇能吃吗”浙江、广东、福建、四川等地网友问得最多的是“××虫能吃吗”而江苏以及上海、北京等地则最爱问“××的皮能不能吃”。下图是全国各地关心的食物:
(图2 各省市最喜欢吃的东西)
用户在问什么能吃吗的时候,并不会说“我来自宁夏,我想知道螃蟹能吃吗”,而是会问“螃蟹能吃吗”,但是服务器采集到了用户的IP地址,而通过IP地址就能知道他所在的省份。这就是数据多维度的威力,如果没有IP这个维度,这个分析就不好办了。而现有的采集手段,能够让我们从多个维度获取数据,再进行后续分析的时候,就能对这些维度加以利用,就是“细”。
大数据之时
我们现在对CPI已经不再陌生,是居民消费价格指数(consumer price index)的简称。我们努力工作,起码要跑过CPI。
(图3 CPI)
那你有了解过CPI是怎么统计的吗这里包括两个阶段,一个是收集商品价格数据,一个是分析并发布数据。我从百度百科上了解到,中国CPI采样500多个市县,采价调查点6.3万个,近4000名采价员,次月中旬发布报告。我还曾找国家统计局的朋友确认了这个事情。
而在美国有一家创业公司叫Premise Data。它通过众包方式,25000个采价员(学生、收银员、司机等),使用手机APP采集数据,每条6~40美分,比美国政府数据提前4~6周发布。
这就是“时”,强调实时收集数据和实时分析数据。当然,在CPI的例子中,我们可以让价格上报更智能一些,不需要人工的方式。
从上面的大、全、细、时四个字,我们就可以对大数据的概念有个较为清晰的认识。这四点主要强调的数据的获取和规模上,和以往传统数据时代的差异。有了这个基础,我们还要看怎么对大数据加以利用。这里就要看看大数据思维。我们也来看两个例子。
大数据思维
(图4 输入法)
85前应该都用过智能ABC,一种古老的输入法,打起来特别慢。到了2002年左右,出了一个叫紫光的输入法,当时我就震惊了。真的输入很快,仿佛你的按键还没按下去,字就已经跳出来了。但渐渐的发现紫光拼音有个问题是许多新的词汇它没有。后来有了搜狗输入法,直接基于搜索的用户搜索记录,去抽取新的词库,准实时的更新用户本地的词库数据,因为有了大量的输入数据,就能直接识别出最可能的组合。
(图5 地图)
我们以前都用纸质的地图,每年还要买新的,旧的地址可能会过时,看着地图你绝对不知道哪里堵车。但有了百度地图就不一样了,我们上面搜索的地址都是及时更新的,虽然偶尔也会有被带到沟里的情况,但毕竟是少数。可以实时的看到路面堵车情况,并且可以规划防拥堵路线。
我们想想这种做事方式和以前有何不同
我们发现不是在拍脑袋做决定了,不是通过因果关系或者规则来决定该怎么办了,而是直接通过数据要答案。我们获取的数据越全面,越能消除更多的不确定性。也就是用数据说话,数据驱动。
本文为专栏文章,来自:桑文锋,内容观点不代表本站立场,如若转载请联系专栏作者,本文链接:https://www.afenxi.com/16714.html 。