GrowingIO创始人张溪梦:创业公司该从什么时候开始关注数据?

人人都说数据重要,那么,创业者应该从什么时候开始关注数据?从公司成立吗?我认为,当然不是。产品早期,数据驱动是个伪命题,只有到了真正增长期,数据才能爆发力量。

GrowingIO创始人张溪梦:创业公司该从什么时候开始关注数据?

人人都说数据重要,那么,创业者应该从什么时候开始关注数据?从公司成立吗?我认为,当然不是。产品早期,数据驱动是个伪命题,只有到了真正增长期,数据才能爆发力量。

数据分析流于形式

我在LinkedIn做过很多年数据分析,发现中美在数据驱动这件事上面差异还是很大的。数据分析在国内一些特别大的企业才能得到重视,但是在美国,数据已经成为驱动众多企业增长的重要引擎。

为什么国内很多企业,表面上很重视数据分析,最后却流于形式?

许多公司处于疯狂增长时期,大家一拍脑子做的决定,可能已经产生很多价值了,这种情况下他们很难意识到数据决策能产生的巨大价值。同时,他们没有太多基础方法论的认知,技术和业务彼此不了解,进一步加剧了数据使用的缓慢,不能看到价值实现。最后就变成了凭感觉来做决策,而不是真正通过数据运营来做决策。

LinkedIn的数据驱动之路

但是我们看看美国,以LinkedIn为例, 在过去6年间从一个7000万左右年营收的企业,一下子增长至 30 亿美元营业额的企业,这种增长速度在企业服务领域里面是惊人的。6 年多以前,我第一次在 LinkedIn 的公司例会上,听到德鲁克的一句话:一个事情,如果不能衡量它,就不能增长它。这句话沉淀出了 LinkedIn 的企业价值观:增长带动数据分析,数据带动变现,变现进一步促进增长。

LinkedIn在早期就有清晰的数据框架,在只有一万个用户的时候就开始在用数据驱动用户增长。

LinkedIn是 2002年底成立的,成立早期就已经把用户数据和变现的框架讲得很清楚了。无论是在产品设计还是业务运营,数据都是很重要的环节。哈弗曼(LinkedIn 创始人 & CEO)收集大量的用户信息,想了三种变现方式:

一、通过用户的基本信息来变现,比如说公司发布职位;
二、用户数量增长到一定程度的时候,有 B2B 企业投广告;
三、当有大量人的信息以后,公司的猎头会用这个平台来找候选人。

变现的方式他想得很清楚,但并没有在第一天就去做,他核心关注的是用户体验和使用度,是整体的增长,增长产生大量的数据,他从数据里学习,未来才做变现。

LinkedIn 在只有 1 万用户的时候,就开始用数据驱动业务。这段时间去观测两个渠道,一个是电子邮件,一个是搜索。从数据里发现,从搜索引擎的渠道里进来的用户,比电子邮件邀请进来的人数量差不多,但在产品平台上的活跃度要高 3 倍。

这是之前没有想到过的,于是做了一个决定:如果要获取同样数量的用户,他们更愿意投入资源在使用频次更高、更愿意把时间花在这里的人,所以,放弃低活跃的用户,专注活跃的用户。

LinkedIn 每年反复要去问的一个问题是:如果只有一件事全公司要做的话,是什么?得用数字来证明的?

一星期内加到 5 个联系人的用户,他们的留存、使用频度、停留时间是那些没有加到 5 个联系人的用户的三倍到五倍,这是他们找到的驱动增长的魔法数字。但是当时这样的人非常非常少,于是他们在产品各个入口都增加社交关系。

LinkedIn 最早的时候,并不知道为什么增加社交关系会产生那么大的留存度,我们分析了起码有两三百个各种不同的指标,最后没有任何一个指标能告诉我们,就是因为这个原因。可是加权以后的结果是,这些用户在上面花了很多时间,间接就成为变现的可能。产品经理就把非常复杂的问题简化,让所有的东西都关注这一个点:让更多的用户在第一周里加到 5 个联系人。于是,增长飞快。

创业公司如何关注数据

每个阶段的重点不同,增长期是数据驱动的关键时期。虽然说数据很重要,那么,创业者应该从什么时候开始关注数据呢?从公司成立就开始吗?不是的。一般来说,创业者会经历 4到5个产品、企业的生命周期。

第一个阶段,冷启动。

这个时候公司特别早期,用大数据驱动是一个伪命题——因为客户数量有限,样本性不足。他们需要更多地去了解潜在客户的需求,去“求”客户来用这个产品。

第二个阶段,增长前期。

冷启动接近完成。有经验的创业者,会开始布局和增长有关系的一些核心指标,比如说日/月活跃,留存度。这些指标的目的不是为了衡量产品当前当下的表现,而是为了未来做增长时有可比较的基准。并且,这些指标能够告诉我们,什么时候我们应该去做增长。产品本身没有黏度的话,去烧钱做增长,它不会真正地增长起来,因为流失速度超过增长速度。以前很多烧钱的企业能成功,是因为竞争没有那么激烈,用户没有那么多种选择。但是今天如果你的产品很差,留存不高,口碑也不好,烧再多的钱也不能获得真正核心的自然增长。

第三个阶段,是增长期。

这个阶段就能看出来好的创业公司和普通创业公司的巨大差别——效率。无论PR还是做活动,都需要人力和时间成本。如何在增长中,找到效率最高的渠道?这个我觉得,是创业公司之间PK的核心竞争力。如果不做数据驱动,靠直觉,一次两次可以,但没有人能进赌场连赢一万次。所以,直觉需要和数据进行结合,这样企业能迅速优化各个渠道,来提高单位时间的转化效率。通过转化效率的提高和叠加,变成企业的核心竞争力。一个不用数据驱动的公司,和一个用数据驱动的公司,假设运营策略一样,资本储备类似,客户也一样,后者一定会胜出。

第四个阶段,是变现期。

业务变现,要求有很高的用户基数。一般互联网产品中高活跃、体验好的用户,会转化为付费用户。类似一个漏斗,不断地去筛,这里面就是要拼运营的效率了。比如说,电商用户的转化漏斗一般是:访问——注册——搜索——浏览——加入购物车——支付,或者到未来的退货。这是非常非常长的一个漏斗,真正要做好数据化运营,要对漏斗的每个环节持续地进行追踪。为什么呢?因为不能衡量,就很难去做增长。

一个好的企业,特别是以后要做营收的企业,必须要关注各个部门各个环节的转化效率。这种转化效率,要达成的手段,可以通过市场营销的方法、产品改进的方法、甚至客户运营的方法。而其中每个环节小幅提高,加在一起就是一个倍数的提高。这种倍增,如果没有做过数据化运营的人,很难体会到会有多大。比如,以前我们在LinkedIn做数据驱动转化时,要推送某篇EDM ,同样发给 10 万人,拍脑袋决策的转化是 0.01%,但是经由数据驱动部门做个简单的数据模型,同样推送后,转化率提升到了 0.3%,高出 30 倍。如果每周都那么做的话,这种转化效果还是非常可观的。

本文为专栏文章,来自:张溪梦,内容观点不代表本站立场,如若转载请联系专栏作者,本文链接:https://www.afenxi.com/26826.html 。

(1)
张溪梦的头像张溪梦专栏
上一篇 2016-09-20 18:24
下一篇 2016-09-22 09:41

相关文章

  • 产品常见数据指标及来源有哪些?

    一款产品(特指APP)的数据指标体系一般都可以分为:用户规模与质量、渠道分析、参与度分析、功能分析以用户属性分析。

    2018-05-10
    0
  • 张溪梦:数据分析如何破解SaaS企业客户留存难题?

    每个人都感受到了今年是中国企业级服务SaaS元年。无论是融资额、用户增长、销售市场,SaaS服务从来没有象今天一样火热。 但是众多SaaS服务厂商都在面临同一道难题,如何保持客户终身价值与客户获取成本的最佳平衡。 2015年11月2日,易观智库发布的《中国企业级SaaS市场年度综合报告2015》中,亦表示这是企业级SaaS市场发展有三大难点之一。 怎么破解?…

    2015-11-10
    0
  • 数据科学的统计学入门

    统计学是门严肃的学科,很多人穷尽一生来学习研究它。

    2016-03-03
    0
  • 用数据说话:数据分析的基本思想是什么?

    今天分享一下数据分析的一些基本思想,我给它起了个名字叫做用数据说话。内容都是个人的一些心得,比较肤浅!如有不足之处,希望大家谅解!废话不说了,现在咱正式开始。 用数据说话,就是用真实的数据说真实的话!真实也可以理解为求真务实。那么,数据分析就是不断地求真,进而持续地务实的过程!用一句话表达就是用数据说话,用真实的数据说话,说真话、说实话、说管用的话。 1.用…

    2015-11-14
    0
  • 个人信用评分模型构建详解 ——0-1风控信用评分模型建设秘籍

    导读:目前我国P2P行业已进入竞争激烈的过程,个人消费贷、小额信贷等也成为P2P行业资产端的竞争,分散型个人客户具备资产集中度低,抵抗宏观经济环境风险、地域金融风险能力强的优势,逐步成为金融业纷纷发力区域。 目前个人信用评分模型来源于传统金融机构信用卡,逐步扩展到个人信贷业务。由于工作主责范围原因,本次分享关于个人信用评分模型建设过程。毕竟专业水平有限,博君…

    2016-08-10
    0
关注我们
关注我们
分享本页
返回顶部