怎么看待PM拿数据说话这回事呢?如何做数据分析?

数据分析PM

情况说明:现在PM动不动就拿数据说话,找RD跑数据,有些数据是肯定必要的,有些数据是可要可不要的,比如对于某项目,PM凭经验可说4级以上的用户可xxx,这时候会有人跳出来问,为什么不是3级、5级?拿出数据来。 实际上真看了数据又能看出什么呢?看完后无非是再次验证了4级,而且看了数据后主管判断还是PM来下的。 再比如有的功能是肯定要上的,但领导会说,调研一下有没有必要,评估数据搞半个月,评估的结果是:嗯,可做。 实际上,该功能整个平台的用户都希望做,是没有必要耗费人力评估的,只要做就可以了。 很多数据和评估是必要的,但有些很形式化,请问有意义吗?

来自前百度搜索引擎Rank工程师姚旭的回答:

数据分析是一种靠谱的产品研究方法, 这玩意有很多误区, 也不能迷信, 最终到头来还是要人来做决策。

忽略沉默的用户

二战时英国空军为了降低飞机的损失,决定给飞机的机身进行装甲加固。由于当时条件所限,只能用装甲加固飞机上的少数部位。他们对执行完轰炸任务返航的飞机进行仔细的观察、分析、统计。发现大多数的弹孔,都集中在飞机的机翼上;只有少数弹孔位于驾驶舱。从数据上说, 加固机翼的性价比最高. 但实际情况缺恰恰相反, 驾驶舱才是最应加固的地方, 因为驾驶舱被击中的飞机几乎都没飞回来.

“发声”的数据是最好获取的, 但如果没把这些沉默的数据考虑进来, 那么这种数据分析是不靠谱的. 所以除了数据的结果, 还得尝试解读这些数据. 而解读数据就完全依赖人了.

把沉默用户当做支持和反对的中间态

2家网站A和B,都经营类似的业务,都有稳定的用户群。它们都进行了类似的网站界面改版。改版之后,网站A没有得到用户的赞扬,反而遭到很多用户的臭骂;而网站B既没有用户夸它,也没有用户骂它。如果从数据来看, 应该是网站B的改版相对更成功, 因为没有用户表达不满。但事实并非如此。网站A虽然遭到很多用户痛骂,但说明还有很多用户在乎它;对于网站B,用户对它已经不关心它了.

网站A指的是Facebook,网站B是微软旗下的Live Space。

把数据作为决策的唯一标准

通常认为数据分析指导工作是一种高性价比的做法, 不容易犯错, 对于代表资方的管理层来说, 比起依赖于人的决策, 依赖于数据的决策似乎更稳健.

这种决策在从0.5向0.8的产品改进上, 可能是有效的. 因为一个已有的产品, 数据就摆在那. 100个用户50个访问超时, 解决了这个问题, 就提升了50%的效果.

但对于从0到0.1的新产品上, 由于数据很难获取, 需要花大力气在获取模拟数据上. 往往是用一周时间去想明白一个做两个小时的产品该不该做的问题. 而且模拟的结果还和最终实际相差很远.

A/B test或是原型系统, 先做出来, 再去验证, 在一些场合下比先拿数据要有效的多.

认为数据是绝对客观的

为了减少内耗, 往往依赖于数据来做决断. 我一直认为数据本身是带有主观性的, 完全客观的数据是没有的. 数据的获取方法, 数据的解读方法, 数据的统计方法, 都是人的决策. 一份数据拿出两个相反的结论来也不是没有可能. 即使主观上没有偏向性, 也受限于方法和视野.

决策上最终起作用的还是人不是数据. 虽然人有那么多的不确定性, 还可能出现争论, 扯皮, 不敢承担责任.

来自知乎网友且歌且行的回答

数据是一种信仰。

毁掉分析数据态度的三个常见原因。

首先,大环境不尊重数据,尤其是老板的态度。如果数据分析师只要随便给一个报告就行,数字多一点和少一点,大家也是一笑而过,并不会追根到底,那么很难让数据分析师以严谨的态度对待数据。

例如,国内这几家数据分析机构,基本都在着急扩张行业,争着占领行业,对于其推出的数据有多精准却不那么在意,所以艾瑞的数据最近才会经常被人说“不靠谱”。

数据分析,今天做得不准,明天再改是没有用的。比如艾瑞,如果数据不稳固,抢着做很多行业,这是不靠谱的做法,指不定哪天砸了自己的牌子。

有人和我提过FACEBOOK数据分析师为什么那么牛,因为他们不觉得数据分析是一个苦事,十几个人在一个房子里把数据分析当做一件很开心的事情来做,数据分析对于他们来说是在追求科学。

第二,好的数据分析师需要一点天分,同时也需要高人点拨,但是电子商务这个圈子,真正懂数据分析的人不会超过10个,所以一般人很难取得真经。这和信仰一样,没有师傅领进门,难度也会大很多。

我回顾自己从微软到易趣,再从敦煌到支付宝,在数据分析上有一次长足的进步,得益于从两位老师的身上得到了许多启发。一位是亚马逊的首席科学家韦思康,曾经,我告诉韦思康,KPI报告显示敦煌网需要4秒钟,他立马让我叫来做技术的同事(他要听到一线同学的反应),问这个4秒钟怎么测算出来,是美国人打开用4秒钟,还是英国人打开用4秒钟,用的是甚么Browser等等。这个4秒钟和商业价值(例如交易量)有关系吗?我当时很触动,连这么一个很基础的数据,他都是以求证的心态来分析的。更令我印象深刻的是,只请他当敦煌网顾问半天,按照他的工作经历来说,随便忽悠我半天是很容易的事情,但是韦思康非常严谨,先是以一个普通人的身份花了半个小时在敦煌网买东西(坚决要真实付钱),切身体会敦煌网的用户体验,然后也不先看数据,而是先问很多能更了解敦煌网的生意形态的问题。讲真他的问题比很多投资分析师来得专业。而现在许多数据分析师,包括当时我自己,只看数据就开口说问题,不深入去体会公司的商业形态。

韦思康告诉我数据是一种态度,让我明白做数据的人就是要全身心投入,好像一种信仰一样,中间有许多路要走;而且,数据与商业密切相关,不能局限在数据的死角里。

另一位是清华大学的教授谢劲红,有一个夏天碰巧去旁听他的课,拿一堆的数据给他看,他一边看一边给我演绎他的思维,他可以很快在一堆数据找到他们之间的关系。后来我带着团队常常去清华找他聊,他教我如何看网络数据,用联动的思维来看网络数据。可以说是他启蒙了我用 “关系”的思维看数据。一听完就回到敦煌跑到敦煌看很多数据,发现了新世界。

第三,数据分析师感叹落不了地,只能谈数据,而不懂商业。如果不懂商业,而单纯看数据,不仅很难有创意的思维,而且是没有意义的(曾经谈过这个问题,不懂商业就别谈数据:http://blog.sina.com.cn/s/blog_5025e3880100kwn1.html)。

而对于一般的数据分析师来说,大部分人没有系统思维,而且也只能看一部分数据,无法从大面儿上了解整个公司的运营数据,这样就令数据分析师难以形成全面的思考方式。

以我自己的工作经历来举例,为什么我在敦煌的时候数据分析能力会突飞猛进,也是因为我在前两家公司只能看到一部分数据,而到了敦煌之后我爱看什么就看什么,受谢教授启发之后我更是天马行空地把营销数据、市场数据、财务数据、产品数据、卖家和买家数据等等联动起来看,这大大改变了我对数据的运用方式。

本文采用「CC BY-SA 4.0 CN」协议转载自互联网、仅供学习交流,内容版权归原作者所有,如涉作品、版权和其他问题请给「我们」留言处理。

(2)
小胖的头像小胖编辑
上一篇 2015-11-14 01:14
下一篇 2013-01-28 14:15

相关文章

关注我们
关注我们
分享本页
返回顶部