通过深度数据挖掘做好F2P手游的三件事

通过深度数据挖掘做好F2P手游的三件事

在F2P手游市场中,贫富差距的现象从未如此巨大。全球每月平均有13185款新游戏进入iOS平台;22905款进入Android平台(来自Priori Data),竞争非常激烈。很多人通过数据挖掘来分析他们的游戏,从而增强玩家的游戏体验并创造更多的盈利空间。但是究竟该怎么做呢

通过深度数据挖掘,我们可以看清玩家在游戏中的一举一动,并加以收集、整理、分析。比如在一款FPS游戏中,知道击杀、伤害输出和承受、使用武器类型、进度、死亡次数、补给使用、怪物刷新、经验值、游戏内置货币、组队等等信息,就可以让我们对玩家行为有更多了解。在这里,希望通过以下三件需要深度数据挖掘来做的事情,可以帮助大家提升自己的F2P游戏。

1.确定玩家在哪里离开以及离开的原因

对于F2P游戏来说,留存是一项重要指标,平均20%-30%的玩家会在游戏的前两分钟就流失。追踪游戏首次玩家体验(FTUE)可以帮助我们改进新手引导。在这里,一些小改动就可以给游戏带来巨大的变化。

通过深度数据挖掘做好F2P手游的三件事

在F2P游戏中典型的首次玩家体验过程

我们需要确定哪些部分会导致玩家离开游戏。可能有些操作过程并不能清楚地解释或者太浪费时间了。要做到这一点,我们需要将流失和留存的玩家进行对比。

具体步骤

在游戏分析平台中,设置一个高密度的事件计数器来追踪玩家在FTUE中的一举一动。

接下来使用漏斗模型来分析这些事件的关联性,这样可以立即知道玩家在游戏中的什么地方受到了阻碍。

看看留存和付费统计在游戏中每个阶段的表现,确定关键阈值(比如大多数玩家会在第五关付费,在第三关的时候留存会达到一个峰值)。

最后,通过比较游戏内外的时间来平衡游戏,确保玩家不会失去动力或者流失。

2.划分鲸鱼玩家(大R)和普通玩家

游戏开发者们总是用各种各样的方法来区分玩家群体,以便更好的制订相应的营销策略。在F2P游戏中,通过玩家行为就可以做出各种各样的区分。鲸鱼玩家(大R土豪爹)、新手、专家、普通玩家在游戏分析中已经成为常用的术语。尽管对玩家们做出区分是有用的,但如果只是依赖这些,我们可能会忽视游戏特有的结构带来的细节区分。

通过深度数据挖掘做好F2P手游的三件事

通过游戏中的玩家行为识别不同玩家独有的类型

通过深度数据挖掘,我们可以看到更多详细的相关因素,比如玩家表现、战斗情况、策略与社交或者其他游戏方面。通过区分这些群体,我们可以用玩家交互工具来增强游戏体验。比如,这有可能是通过信息传递来实现的,通过各个细节来给玩家提供帮助或配送礼物,或者在需要的时候调整游戏参数。

具体步骤

在定义独特的玩家群体时首先要考虑的就是该用什么方法。比如,观察伴随击杀/死亡比的经验获取比例来分辨一个玩家是否高端。通过各种设置来测试在游戏中的互动,引进互动机制和现场测试。

3.多角度的测试

与区别玩家群体一样重要的是判断活动的时效性和长期效应。A/B测试是开发人员使用最多的方法。

A/B测试常被用来判断最优的方式,比如内购(IAP)定价。它可以显示价格是否可以被广大玩家接受,并显示对玩家的影响及盈利状况。简单地说,游戏中的一个改变可能会导致一群玩家花钱更多,而另外一群玩家则花钱更少。所以,我们需要通过各种各样的游戏界面工具从多个角度来进行评估。

具体步骤

确定在测试中需要设置的变量以及特定的用户群体。

通过深度数据挖掘做好F2P手游的三件事

A/B测试会用到各种不同的变量,包括游戏内置信息推送和奖励等

一些先进的A/B测试工具可以帮助我们进行卓有成效的分析,这样我们就可以确定各种变量对游戏方方面面造成的影响。

通过深度数据挖掘来优化游戏

通过深度数据挖可以判断玩家与游戏的交互情况,并熟知我们的玩家。我们需要这些信息来与玩家进行有效互动。专注所有玩家的游戏体验,那么我们的游戏将会更加成功!

作者:Louise Seaward 翻译:GRG游戏研究组/Dean 来源:deltaDNA

本文采用「CC BY-SA 4.0 CN」协议转载自互联网、仅供学习交流,内容版权归原作者所有,如涉作品、版权和其他问题请给「我们」留言处理。

(0)
大数据精选的头像大数据精选编辑
上一篇 2015-11-15 22:31
下一篇 2015-11-18 22:51

相关文章

关注我们
关注我们
分享本页
返回顶部