对于想入门数据科学的新手来说,选择学Python还是R语言是一个难题,本文对两种语言进行了比较,希望能帮助你做出选择。
我是德勤的数据科学家主管,多年来我一直在使用Python和R语言,并且与Python社区密切合作了15年。本文是我对这两种语言的一些个人看法。
第三种选择
针对这个问题,Studio的首席数据科学家Htley Wickham认为,比起在二者中选其一,更好的选择是让两种语言合作。因此,这也是我提到的第三种选择,我在文本最后部分会探讨。
如何比较R和Python
对于这两种语言,有以下几点值得进行比较:
· 历史:
R和Python的发展历史明显不同,同时有交错的部分。
· 用户群体:
包含许多复杂的社会学人类学因素。
· 性能:
详细比较以及为何难以比较。
· 第三方支持:
模块、代码库、可视化、存储库、组织和开发环境。
· 用例:
根据具体任务和工作类型有不同的选择。
· 是否能同时使用:
在Python中使用R,在R中使用Python。
· 预测:
内部测试。
· 企业和个人偏好:
揭晓最终答案。
历史
简史:
ABC – > Python 问世(1989年由Guido van Rossum创立) – > Python 2(2000年) – > Python 3(2008年)
Fortan语言 – > S语言(贝尔实验室) – > R语言问世(1991年由Ross Ihaka和Robert Gentleman创立) – > R 1.0.0(2000年) – > R 3.0.2(2013年)
社区
用户群体
在比较Python与R的使用群体时,要注意:
只有50%的Python用户在同时使用R
假设所有使用R语言的程序员都用R进行相关“科学和数字”研究。可以确定无论程序员的水平如何,这种统计分布都是真实。
这里回到第二个问题,有哪些用户群体。整个科学和数字社区包含几个子群体,当中存在一些重叠。
使用Python或R语言的子群体:
· 深度学习
· 机器学习
· 高级分析
· 预测分析
· 统计
· 探索和数据分析
· 学术科研
· 大量计算研究领域
虽然每个领域几乎都服务于特定群体,但你会发现在统计和探索等方面,使用R语言更为普遍。在不久之前进行数据探索时,比起Python,R语言花的时间更少,而且使用Python还需要花时间进行安装。
所有这一切都被称为Jupyter Notebooks和Anaconda的颠覆性技术所改变。
Jupyter Notebook:增加了在浏览器中编写Python和R代码的能力;
Anaconda:能够轻松安装和管理Python和R。
现在,你可以在友好的环境中启动和运行Python或R,提供开箱即用的报告和分析,这两项技术消除了完成任务和选择喜欢语言间的障碍。Python现在能以独立于平台的方式打包,并且更快地提供快速简单的分析。
社区中影响语言选择的另一个因素是“开源”的概念。不仅仅是开源的库,还有协作社区对开源的影响。讽刺的是,Tensorflow和GNU Scientific Library等开源软件(分别是Apache和GPL)都与Python和R绑定。虽然使用R语言的用户很多,但使用Python的用户中有很多纯粹的Python支持者。另一方面,更多的企业使用R语言,特别是那些有统计学背景的。
最后,关于社区和协作,Github对Python的支持更多。如果看到最近热门的Python包,会发现Tensorflow等项目有超过3.5万的用户收藏。但看到R的热门软件包,Shiny、Stan等的收藏量则低于2千。
性能
这方面不容易进行比较。
原因是需要测试的指标和情况太多。很难在任何一个特定硬件上测试。有些操作通过其中一种语言优化,而不是另一种。
循环
在此之前让我们想想如何用Python与R对比。你真的想在R语言中做很多循环吗?毕竟这两种语言的意图不太相同。
{
“cells”: [
{
“cell_type”: “code”,
“execution_count”: 1,
“metadata”: {},
“outputs”: [],
“source”: [
“import numpy as npn”,
“%load_ext rpy2.ipython”
]
},
{
“cell_type”: “code”,
“execution_count”: 2,
“metadata”: {},
“outputs”: [],
“source”: [
“def do_loop(u1):n”,
“n”,
” # Initialize `usq`n”,
” usq = {}n”,
“n”,
” for i in range(100):n”,
” # i-th element of `u1` squared into `i`-th position of `usq`n”,
” usq[i] = u1[i] * u1[i]n”
]
},
{
“cell_type”: “code”,
“execution_count”: 3,
“metadata”: {},
“outputs”: [],
“source”: [
“%%Rn”,
“do_loop <- function(u1) {n”,
” n”,
” # Initialize `usq`n”,
” usq <- 0n”,
“n”,
” for(i in 1:100) {n”,
” # i-th element of `u1` squared into `i`-th position of `usq`n”,
” usq[i] <- u1[i]*u1[i]n”,
” }n”,
“n”,
“}”
]
},
{
“cell_type”: “code”,
“execution_count”: 4,
“metadata”: {},
“outputs”: [
{
“name”: “stdout”,
“output_type”: “stream”,
“text”: [
“1.58 ms ± 42.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)n”
]
}
],
“source”: [
“%%timeit -n 1000n”,
“%%Rn”,
“u1 <- rnorm(100)n”,
“do_loop(u1)”
]
},
{
“cell_type”: “code”,
“execution_count”: 5,
“metadata”: {},
“outputs”: [
{
“name”: “stdout”,
“output_type”: “stream”,
“text”: [
“36.9 µs ± 5.99 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)n”
]
}
],
“source”: [
“%%timeit -n 1000n”,
“u1 = np.random.randn(100)n”,
“do_loop(u1)”
]
}
],
“metadata”: {
“kernelspec”: {
“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”
},
“language_info”: {
“codemirror_mode”: {
“name”: “ipython”,
“version”: 3
},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.6.3”
}
},
“nbformat”: 4,
“nbformat_minor”: 2
}
Python为0.000037秒,R为0.00158秒
包括加载时间和在命令行上运行:R需要0.238秒,Python需要0.147秒。强调,这并不是科学严谨的测试。
测试证明Python的运行速度明显加快。通常这并没有太大影响。
除了运行速度外,对于数据科学家而言哪种性能更重要?两种语言之所以受欢迎是因为它们能被用作命令语言。例如,在使用Python时大多时候我们都很依赖Pandas。这就涉及到每种语言中模块和库,以及其执行方式。
第三方支持
Python有PyPI,R语言有CRAN,两者都有Anaconda。
CRAN使用内置的`install.packages`命令。目前,CRAN上有大约1.2万个包。其中超过1/2的包都能用于数据科学。
PyPi中包的数量超过前者的10倍,约有14.1万个包。专门用于科学工程的有3700个。其中有些也可以用于科学,但没有被标记。
在两者中都有重复的情况。当搜索“随机森林”时,PyPi中可以得到170个项目,但这些包并不相同。
尽管Python包的数量是R的10倍,但数据科学相关的包的数量大致相同。
运行速度
比较DataFrames和Pandas更有意义。
我们进行了一项实验:比较针对复杂探索任务的执行时间,结果如下:
在大多数任务中Python运行速度更快。
来源:http://nbviewer.jupyter.org/gist/brianray/4ce15234e6ac2975b335c8d90a4b6882
可以看到,Python + Pandas比原生的R语言DataFrames更快。注意,这并不意味着Python运行更快,Pandas 是基于Numpy用C语言编写的。
可视化
这里将ggplot2与matplotlib进行比较。
matplotlib是由John D. Hunter编写的,他是我在Python社区中最敬重的人之一,他也是教会我使用Python的。
Matplotlib虽然不易学习但能进行定制和扩展。ggplot难以进行定制,有些人认为它更难学。
如果你喜欢漂亮的图表,而且无需自定义,那么R是不错的选择。如果你要做更多的事情,那么Matplotlib甚至交互式散景都不错。同样,R的ShinnyR能够增加交互性。
是否能同时使用
可能你会问,为什么不能同时使用Python和R语言
以下情况你可以同时使用这两种语言:
· 公司或组织允许;
· 两种都能在你的编程环境中轻松设置和维护;
· 你的代码不需要进入另一个系统;
· 不会给合作的人带来麻烦和困扰。
一起使用两种语言的方法是:
· Python提供给R的包:如rpy2、pyRserve、Rpython等;
· R也有相对的包:rPython、PythonInR、reticulate、rJython,SnakeCharmR、XRPython
· 使用Jupyter,同时使用两者,例子如下:
之后可以传递pandas的数据框,接着通过rpy2自动转换为R的数据框,并用“-i df”转换:
来源:http://nbviewer.jupyter.org/gist/brianray/734bd54f468d9a6db9171b2cfc98405a
预测
Kaggle上有人对开发者使用R还是Python写了一个Kernel。他根据数据发现以下有趣的结果:
· 如果你打算明年转向Linux,则更可能是Python用户;
· 如果你研究统计数据,则更可能使用R;如果研究计算机科学,则更可能使用Python;
· 如果你还年轻(18-24岁),则更可能是Python用户;
· 如果你参加编程比赛,则更可能是Python用户;
· 如果你明年想使用Android,则更可能是Python用户;
· 如果你想在明年学习SQL,则更可能是R用户;
· 如果你使用MS office,则更可能是R用户;
· 如果你想在明年使用Rasperry Pi,则更可能是Python用户;
· 如果你是全日制学生,则更可能是Python用户;
· 如果你使用的敏捷方法(Agile methodology),则更可能是Python用户;
· 如果对待人工智能,比起兴奋你更持担心态度,则更可能是R用户。
企业和个人偏好
当我与Googler和Stack Overflow的大神级人物Alex Martelli交流时,他向我解释了为什么Google最开始只官方只是少数几种语言。即使是在Google相对开发的环境中,也存在一些限制和偏好,其他企业也是如此。
除了企业偏好,企业中第一个使用某种语言的人也会起到决定性作用。第一个在德勤使用R的人他目前仍在公司工作,目前担任首席数据科学家。我的建议是,选择你喜欢的语言,热爱你选择的语言,起到领导作用,并热爱你的事业。
当你在研究某些重要的内容时,犯错是难以避免的。然而,每个精心设计的数据科学项目都为数据科学家留有一些空间,让他们进行实验和学习。重要的是保持开放的心态,拥抱多样性。
最后就我个人而言,我主要使用Python,之后我期待学习更多R的内容。
作者 Brian Ray
编译 Mika
本文为 CDA 数据分析师原创作品,转载需授权
本文由 CDA数据分析师 投稿至 数据分析网 并经编辑发表,内容观点不代表本站立场,如转载请联系原作者,本文链接:https://www.afenxi.com/61190.html 。