人工智能
-
25张图让你读懂神经网络架构
由于新的神经网络架构无时无刻不在涌现,想要记录所有的神经网络是很困难的事情。要把所有这些缩略语指代的网络(DCIGN,IiLSTM,DCGAN等)都弄清,一开始估计还无从下手。
-
机器学习常见算法分类汇总
本文为您总结一下常见的机器学习算法,以供您在工作和学习中参考。
-
关于如何解释机器学习的一些方法
在这篇文章中出现的每一个技巧里,『可解释性』都被解构为几个更基本的方面:模型复杂程度,特征尺度,理解,信任 —— 接下来我首先就来简单对这几点做个介绍。
-
人工智能的三个阶段:我们正从统计学习走向语境顺应
最近我读到了一本名叫《人工智能的三次浪潮(Three Waves of AI)》的书,作者是 DARPA 信息创新办公室主管 John Launchbury,他从一个更长远和宽广的视角,将人工智能的历史与未来划分为了三个阶段。
-
看得“深”、看得“清” 深度学习在图像超清化的应用
我们希望机器能够通过低清图像有限的图像信息,推断出图像对应的高清细节,这就需要算法能够像画家一样“理解”图像内容。
-
机器学习、深度学习面试知识点汇总
本文总结了一些秋招面试中会遇到的问题和一些重要的知识点,适合面试前突击和巩固基础知识。
-
利用深度学习进行时序数据的异常检测
本文介绍神经网络,包括对前馈神经网络和递归神经网络的简要说明,并阐述了如何构建一个检测时间序列数据中异常现象的递归神经网络。
-
如何正确地运用人工智能模型?
为了快速对问题进行分类,帮助大家更好地运用模型,本文就带大家来看一下运用人工智能模型的基本步骤!
-
基于标记数据学习降低误报率的算法优化
无论是基于规则匹配的策略,还是基于复杂的安全分析模型,安全设备产生的告警都存在大量误报,这是一个相当普遍的问题。其中一个重要的原因是每个客户的应用场景和数据都多多少少有不同的差异,基于固定判断规则对有统计涨落的数据进行僵化的判断,很容易出现误判。 在没有持续人工干预和手动优化的情况下,策略和模型的误报率不会随着数据的积累而有所改进。也就是说安全分析人员通过对…
-
如何用深度学习进行CT影像肺结节探测
如何用深度学习进行CT影像肺结节探测。
-
Two Sigma遴选:量化大佬都在看什么机器学习论文?
Self-trainingforFew-shotTransferAcrossExtremeTaskDifferences:作者提出了这样一种方法,当一个域只有少量的标注数据及大量的未标注数据时,可以在未标记样…
-
深度学习在单图像超分辨率上的应用:SRCNN、Perceptual loss、SRResNet
深度学习在单图像超分辨率上的应用:SRCNN、Perceptual loss、SRResNet。
-
机器学习入门必须了解的十大算法
哈佛商业评论称数据科学家是21世纪最性感的工作。所以,对于那些ML刚刚开始的人来说,这篇博客机器学习算法工程师需要知道的十大算法是非常有用的。
-
如何手动优化神经网络模型(附链接)
翻译:陈丹 校对:车前子来自:微信公众号 数据派THU 本文是一个教授如何优化神经网络模型的基础教程,提供了具体的实战代码供读者学习和实践。 深度学习的神经网络是采用随机梯度下降优化算法对训练数据进行拟合。 利用误差反向传播算法对模型的权值进行更新。优化和权值更新算法的组合是经过仔细挑选的,是目前已知的最有效的拟合神经网络的方法。 然而,也可以使用交替优化算…
-
吴恩达:22张图全解深度学习知识
本文从深度学习基础、卷积网络和循环网络三个方面介绍该笔记。