数据挖掘
-
趣味数据挖掘系列8:农村中学并迁选址、K-平均聚类及蛋鸡悖论
本文从农村中学并迁选址问题出发,介绍了数据挖掘十大算法中位居第二的K-平均聚类,后又借用牛顿迭代原理,议论蛋鸡悖论。
-
趣味数据挖掘系列7:团拜会与鸡尾酒会上的聚类
用异于传统的方式,从讲课PPT上取些素材(这样比较快),来说明聚类的一些概念,为下篇做些铺垫,下篇将通过通俗的例子说明一个著名的方法。
-
趣味数据挖掘系列6:借水浒传故事,释决策树思路
决策树 (又称判定树,Decision Tree)是硕、博士生数据挖掘课程要点和难点,教学实践表明,这一章需要数学基础知识多,难得有趣。明知是难点,偏向难点行,再难也要“趣味”一番,从课程PPT中取了一些素材,把漫谈的焦点选在了水泊梁山。
-
趣味数据挖掘系列5:听妈妈讲过去的故事,分房与分类
故事中没有月亮、云朵和晚风,却有关于数据挖掘中的分类技术的启示;虽然,现在不再分福利房了,但此故事既回顾历史,也解释了分类技术若干要点,有参考价值。
-
金融大数据信用评分模型解析
大数据征信:芝麻信用、腾讯信用和51信用卡等信用评分模型解析。
-
趣味数据挖掘系列4:巧挖科学博客之均击量公式,兼谈干预规则
为消除疲劳,现来一段有趣的、与博友的自尊心和荣誉感相关的博文,议题是:挖掘科学博客的平均点击量公式,以及提高平均点击量的方法。
-
趣味数据挖掘系列3:一篇 “它引” 上万的大牛论文 与 数据血统论
本文先通俗地介绍快速挖掘关联规则的Apriori算法,然后介绍发表这一算法的论文(它被引用了11480+次),最后关注此文的实际影响 与 传统影响因子的差距。
-
趣味数据挖掘系列2:烤鸭、面饼和甜面酱之朴素关联
此文从原讲课PPT中,取一些素材,来解释关联规则的挖掘思路和应用方法。
-
趣味数据挖掘系列1:被打”和“北大” 的关联
本文借此例来说明数据挖掘中关联规则中支持度、置信度和兴趣度概念,顺便对此事做个定量分析, 同时也作为趣味数据挖掘系列博文的开篇。
-
如何使用sklearn地进行数据挖掘?
使用sklearn进行数据挖掘。
-
使用混淆矩阵(Confusion matrix)对分类模型进行评估
本篇文章我们介绍一种对分类模型进行效果评估的方法:混淆矩阵(Confusion matrix)。
-
大嘴巴漫谈数据挖掘:差异运营聚用户,因子分析打前站
在产品成熟时期,产品的用户群规模和营收业绩稳定增长,提高用户忠诚,增强用户体验是这个时期的重要举措,准确及时地了解用户对产品的反馈,并以此制定针对性的改善方案,提供差异化的业务运营。 此处具体涉及用户细分和用户体验两个部分。用户细分即是将特征相似的用户归到同一个组,并对各个群进行特征刻画及分析。用户…
-
数据挖掘在精准营销中的应用
精准营销需要解决的问题是:哪些用户是某个产品或者营销活动的目标用户?或者是每个用户最适合推荐什么产品?前者是找目标用户,后者是为用户推荐产品,两者是类似的。
-
决策树算法真的越复杂越好吗?
对大数据感兴趣的你想必一定知道决策树这个名词吧,是不是也听说过其中各种复杂的组合算法呢?不过,在实际业务中,复杂的算法一定优于简单的算法吗?No……如果你觉得自己认识得还不够深入、全面,或者还缺乏实践的机会,请仔细阅读这篇专业长文。
-
数据挖掘,想说爱你并不容易
基于大数据技术能带来哪些新的应用类型,进而为客户带来新的价值增长点?要回答这个问题,有关数据挖掘方面的讨论是一个不可回避的,但是数据挖掘,在应用层面引起的争议也是非常大的。