统计学
-
小白学统计(38)样本容量确定——总体成数P的样本容量
如果抽样的目的是估计总体成数P的置信区间,则在给定的总体成数抽样误差△P和置信度1-α的条件下,可由以下公式确定样本容量。 从上面的式子中可以看到,都有要估计的总体成数P。因此,在计算n时,必须先确定一个P值。通常P可以通过以下几种方式确定: 1、用以前类似研究的最接近0.5的样本成数代替,这样可以使n较大; 2、通过试点调查,用样本成数代替P; 3、直接用…
-
小白学统计(37)区间估计— —总体成数的置信区间
在实践中,有许多情况要对总体成数进行估计。例如,通过样本合格品率估计总体的合格品率;通过样本的支持率估计总体的支持率等,这些都属于成数的估计问题。下面我们用p表示总体成数;用`p表示样本成数。对总体成数进行估计,就是用`p去估计p。当n为小样本时,`p为离散型变量,`p的概率分布为二项式分布。当n为大样本时,如果np>5,同时n(1-p)>5,则…
-
小白学统计(36)样本容量的确定—总体均值的样本容量确定
在抽样之前,确定适当的样本容量是必须的。因为样本容量直接影响到抽样的误差大小以及抽样费用的多少。如果样本容量较大,就会减少抽样误差,提高估计总体参数的精度,但是抽样的费用就会相应增加;反之,样本容量较小,抽样费用可以降低,但抽样误差就会增大。所以,在抽样之前必须确定一个适当的样本容量。 所谓适当的样本容量,就是指能够满足研究者对抽样误差要求的应抽取的最少样本…
-
小白学统计(35)不同条件的总体均值单样本估计方法总述
基础准备 均值抽样分布: 小白学统计(25)通俗解释“大数据”及推断性统计学:抽样分布 小白学统计(27)抽样分布:详述均值的抽样分布及中心极限定理 小白学统计(28)抽样分布:t分布 估计原理:小白学统计(32)估计理论:详述总体均值的单样本估计原理 总体均值单样本估计条件 上一篇(回顾:小白学统计(32)估计理论:详述总体均值的单样本估计原理)进行总体均…
-
小白学统计(34)总体参数的区间估计——小样本(n<30)条件下总体均值?的区间估计
当n<30时,总体分布对样本均值`X的抽样分布有很大影响。如果总体服从正态分布,则`X服从正态分布;如果总体不服从正态分布,则`X的抽样分布很难判断,这时可以利用切比雪夫不等式对总体均值进行估计(后面会详细叙述)。下面我们仅介绍总体服从正态分布时,均值的区间估计。 1、总体标准差σ已知,的置信度为1-α的置信区间和大样本(n≥30)的公式一致 2、 总…
-
小白学统计(33)大样本(n≥30)条件下总体均值?的区间估计
大样本(n≥30)条件下的区间估计 当样本容量为大样本时,根据中心极限定理,样本均值`X的抽样分布以正态分布为极限,此时可以不用考虑通体的分布形式。估计时,根据总体标准差σ是否已知分为两种形式: 1、 总体标准差σ已知,的置信度为1-α的置信区间为 `X-Zα/2*σ/n<<`X+Zα/2*σ/n 2、 总体标准差σ未知,的置信度为1-α的置信区…
-
什么是非参数统计?
在对总体的分布不作假设或仅作非常一般性假设条件下的统计方法称为“非参数统计”。
-
小白学统计(32)估计理论:详述总体均值的单样本估计原理
基础准备 推断性统计学是统计科学的一部分,它提供了从样本特征对整个总体特征做出推断的逻辑和方法。推断性统计学在理论上有4个组成部分:概率论、抽样理论、估计理论和假设检验理论。这篇讲述估计理论在总体均值的单样本估计中的应用。 概率论:小白学统计(7)——推断理论基础(概率) 抽样理论: 小白学统计(24)推断性统计学:抽样设计 小白学统计(25)通俗解释“大数…
-
什么是方差?
方差是各个数据与其算术平均数的离差平方和的平均数,通常以σ2表示。
-
小白学统计(31)推断统计基础:置信度与置信区间
基础准备 结束了描述性统计学部分的内容后,就进入到推断统计学阶段。在这个阶段,主要任务就是交给大家用样本信息推断总体信息的原理及方法。点估计和区间估计,置信度和置信区间是推断性统计学的基础性内容。统计基础请前往下方获取导航页。 概念定义 先定义一些区间估计的概念: θ:待估计的总体参数; θL:由样本确定的置信下限; θU:由样本确定的置信上限; α:显著性…
-
小白学统计(30)推断统计基础:点估计与区间估计
参数估计:就是根据样本统计量的数值对总体参数进行估计的过程。根据参数估计的性质不同,可以分成两种类型:点估计和区间估计。
-
小白学统计(29)切比雪夫(Chebyshev)定理
在总体分布未知(或非正态)且样本容量小于30时,均值的抽样分布是未知的,这时我们就不能运用中心极限定理、t分布和大样本理论来估计总体的均值,此时,可以运用切比雪夫(Chebyshev)定理来近似估计总体均值。
-
小白学统计(28)抽样分布:t分布
有正态总体(均值为μ),定义随机变量T(见下方公式),它的值为t(变量用大写字母表示,具体的值用小写字母表示)。
-
从程序员的角度说统计学习方法概论
对于程序员来说,特别是很少见数学公式的来说,要读一本这样满是公式的书其实是比较有挑战的。
-
小白学统计(27)抽样分布:详述均值的抽样分布及中心极限定理
均值的抽样分布类型 抽样分布的定义、作用和主要种类已经介绍过(回顾点击:通俗解释“大数据”及推断性统计学:抽样分布),本篇介绍均值的抽样分布。均值抽样分布根据样本量的情况分为均值的理论抽样分布和均值的经验抽样分布。 均值的理论抽样分布 通俗的解释:有总体N,每次从中抽取固定容量为n的样本并计算出该样本的均值,如果将所有可能抽取的样本列出,并计算均值,这些均值…