数据挖掘
-
决策树算法真的越复杂越好吗?
对大数据感兴趣的你想必一定知道决策树这个名词吧,是不是也听说过其中各种复杂的组合算法呢?不过,在实际业务中,复杂的算法一定优于简单的算法吗?No……如果你觉得自己认识得还不够深入、全面,或者还缺乏实践的机会,请仔细阅读这篇专业长文。
-
诸葛ioCEO孔淼:从第三方数据到第一方数据的技术变革
如果把我在数据分析的经验划分的话,刚好也就是我所经历的两次创业阶段,第一阶段是“第三方数据分析”,第二阶段是“第一方数据分析”。所以今天咱们就来漫谈下第三方到第一方数据分析。
-
最懂数据的产品经理车品觉:挖掘大数据就像做菜
我们往往都是有问题找数据,大数据时代则不同,其最核心的特质是“用数据找机会”。从“看”到“用”,再从“用”到“养”,运营数据本身就是一个复杂的过程。
-
数据挖掘,想说爱你并不容易
基于大数据技术能带来哪些新的应用类型,进而为客户带来新的价值增长点?要回答这个问题,有关数据挖掘方面的讨论是一个不可回避的,但是数据挖掘,在应用层面引起的争议也是非常大的。
-
大嘴巴漫谈数据挖掘:用户产品藏联系,借助决策树结构
当产品的订购或下载明显上升,需求量逐步扩大,营收业绩稳定增长,那么产品将进入发展时期。这时,产品经理应重点关注和考虑用户和产品之间的关系,了解哪些产品是经常被一起购买的,购买与不购买某类产品的用户特征又是怎样的。 通过挖掘产品横向之间的关联关系,分析出不同产品之间的内在共性,产品经理可以根据研究结果设计出针对性的产品组合,以此促进产品的订购和使用,为业务交叉…
-
技术红颜告诉你大数据分析的真谛:别只盯着我的钱!
大数据时代已经到来,每个企业都开始忙着数据挖掘,忙着数据分析,忙着构建各种算法模型。但为什么你无法引发“技术红颜”式的蝴蝶效应?为什么你眼中对用户的“精准推荐”,成了Ta备感厌烦的“精准骚扰”?
-
【案例】洛杉矶警局如何用算法预测并制止犯罪行为
洛杉矶警局与加州大学洛杉矶分校合作,采集分析了80年来1300万起犯罪案件,用于进行犯罪行为的大型研究,通过算法预测成功将相关区域的犯罪率降低了36个百分点。
-
大数据入门的四个必备常识
大数据入门的四个必备常识,看完这篇文章让你对大数据入门有一个清晰的认知。
-
Python对爬取的文本进行情感分析
这篇短文的目的是分享我这几天里从头开始学习Python爬虫技术的经验,并展示对爬取的文本进行情感分析(文本分类)的一些挖掘结果。
-
大嘴巴漫谈数据挖掘:定位目标找用户,分类筛选决策树
数据挖掘中的决策树算法是一个广泛应用的判别方法,可以将一个决策流程映射到一个树形结构上,同时满足特征属性描述的简洁性和分类结果预测的准确性。
-
商品搜索引擎的推荐系统设计方案
结合目前已存在的商品推荐设计(如淘宝、京东等),推荐系统主要包含系统推荐和个性化推荐两个模块。
-
大数据分析:数据分析师到底是个怎样的物种!
不管数据分析师是个什么物种,不可否认,在大数据时代,人们对理性的数据分析结果越来越感兴趣,企业CEO、营销人员都在渴求数据,数据分析师的市场会越来越大,这个职业的潜力无穷!
-
粗糙的贝叶斯转化概率预测模型
转化率是网站分析中最受关注的指标之一,如何设定转化率目标?哪些用户最有可能转化?他们有哪些特征?如何发现并找到这些用户?这些都是负责网站运营和市场营销的同学最关注的问题。本篇文章通过贝叶斯算法对网站中已经完成转化的历史用户数据进行分析,发现购买转化用户的特征,并通过交叉细分对不同用户购买转化的概率进行预测。 贝叶斯是分类和预测算法中的一种,我们在前面的文章中…
-
新闻推荐,追逐卡戴珊的“屁股”
前一阵子,有一篇新闻文章叫“雅虎记者的困扰:与卡戴珊的屁股竞争”,讲的是雅虎公司的一群高级记者所写的文章与推荐系统所推荐的文章相互竞争协调的事情,里面提到的现象可能很多做推荐系统开发的人都感同身受,似曾相识。那么今天,我们不谈具体的公司具体的案例,而来聊一下推荐系统开发中遇到“推荐结果和自己的直觉不相符合怎么办”这个事情该怎么办。 记者和编辑的抱怨 你是一个…