机器学习
-
机器学习是统计学旧汤换新药?非也
最近,社交媒体上疯传一张表情包(如下图)。随着深度学习的炒作开始消退,看到这张图的人将会心一笑。“机器学习真的没什么好让人兴奋的”或者“它只是对古老统计学的改进”这类情绪越来越普遍。但问题是,这不是真的。
-
担心面部识别泄露隐私?多伦多大学图像「隐私过滤器」了解一下
随着面部识别系统越发成熟,个人隐私问题也引发了越来越多的担忧。多伦多大学的研究人员利用对抗式训练的深度学习技术开发了一种新的算法,这种算法可以动态地扰乱面部识别系统,有助于保护用户隐私。研究者表示,他们的系统可以将可检测的面部比例从原先的近百分之百降低到 0.5%。 每当用户将照片或视频上传到社交媒体平台时,这些平台的面部识别系统都会对用户有一定的了解。这些…
-
友盟+的数据智能生意经:如何从DI向AI进阶?
到今年为止,大数据的概念已经火了不止 7 年,人工智能和区块链成为了新的风口,而大数据产业则慢慢沉淀下来,更多地着眼于“落地应用”。
-
算法太多挑花眼?教你如何选择正确的机器学习算法
机器学习算法虽多,却没有什么普适的解决方案。决策树、随机森林、朴素贝叶斯、深度网络等等等等,是不是有时候觉得挑花了眼呢?
-
6月份最热门的机器学习开源项目Top10
燥热的 6 月天已经结束了,本月机器学习领域又有哪些开源项目值得一看呢?Mybridge AI 从将近 250 个机器学习开源项目中评选出排名 Top10 的项目。这是他们对在此期间新发布或进行重大发布的项目进行比较之后得出的结果,考量了各种因素对项目的专业性进行排序。哪些项目上榜了呢?
-
信用卡通不过?用数据分析技术,带你深度解析信用卡评分体系
随着互联网金融时代的到来,信用评分体系显得越发重要,本文就解读信用卡评分体系是如何建立的
-
无需标注数据,DeepMind新研究让机器“脑补”立体世界!
在未来的工作中,探索GQN在场景理解的更广泛方面的应用也很重要,例如通过跨空间和时间的查询来学习物理和运动的常识概念,以及在虚拟和增强现实中的应用。
-
康奈尔&英伟达提出多模态无监督图像转换新方法
我们展示了一个多模态无监督 Image-to-Image 变换框架,我们的模型在(输出图像的)质量和多样性上都超过了现有的无监督方法,达到了和如今最先进的监督方法相当的结果。
-
如何利用机器学习实现有噪声标签样本分类模型?
借助 AI 深度分析,提升了20%的电子开关测试准确度。
-
机器学习大牛最常用的5个回归损失函数,你知道几个?
“损失函数”是机器学习优化中至关重要的一部分。L1、L2损失函数相信大多数人都早已不陌生。那你了解Huber损失、Log-Cosh损失、以及常用于计算预测区间的分位数损失么?这些可都是机器学习大牛最常用的回归损失函数哦!
-
5月Github上最热门的数据科学和机器学习项目TOP5
如果你是开发者,那一定对 GitHub 不会陌生,截止到 2018 年 4 月 10 日(GitHub 上线 10 周年),已经拥有超过 2700 万开发者,分布在全世界,在超过 8000 万个项目上进行着紧密协作。
-
为什么数据科学家都钟情于最常见的正态分布?
对于深度学习和机器学习工程师们来说,正态分布是世界上所有概率模型中最重要的一个。即使你没有参与过任何人工智能项目,也一定遇到过高斯模型,今天就让我们来看看高斯过程为什么这么受欢迎。
-
2018 年热门 Python 库 TOP20
在解决数据科学任务和挑战方面,Python继续处于领先地位。去年,我对当时热门的Python库进行了总结。今年,我在当中加入新的库,重新对2018年热门Python库进行全面盘点。
-
用人工智能预测醉酒
Uber会根据用户使用 Uber App 的方式来识别异常行为,预测用户是否处于醉酒(不清醒)状态。
-
找工作必看!数据科学与机器学习最全面试指南
你是否有志于成为一名数据科学家,却又因为不知如何克服面试而头疼不已?跨入数据科学领域并不是一件简单的事。因此,在进行面试之前,你最好能做好充分的准备。