聚类分析
-
永不过时的K-Means算法
众所周知,数据挖掘算法并非十全十美,在某些情况下他们也会失效。 使用 K 均值算法(K-Means)时就可能会出现这种情况,当然此时你可以尝试一下另一种方法—— K 中心聚类算法(K-Medoids),也许效果会更好。
-
用R语言对混合型数据进行聚类分析
利用聚类分析,我们可以很容易地看清数据集中样本的分布情况。
-
三个常用数据分析模型的典型应用场景
哪三个模型呢?决策树、K-means聚类、因子分析。
-
聚类分析基础知识总结及实战解析
聚类分析是没有给定划分类别的情况下,根据样本相似度进行样本分组的一种方法,是一种非监督的学习算法。
-
数据挖掘可挖掘的知识类型
数据挖掘,有哪些可以挖掘的知识类型?
-
机器学习系列(6):K-Means聚类
本章,我们讨论无监督学习算法,聚类(clustering)。
-
机器学习系列(3):特征提取与处理
本章,我们介绍提取这些变量特征的方法。这些技术是数据处理的前提——序列化,更是机器学习的基础,影响到本书的所有章节。
-
推荐系统的苟且和远方
“推荐系统不是只有眼前的苟且,还有诗和远方的田野”。这也是在推荐和广告界被大量研究的EE问题(Exploit & Explore),Exploit就是眼前的苟且,Explore就是诗和远方的田野。
-
聚类分析经典算法讲解及实现
本文将系统的讲解数据挖掘领域的经典聚类算法,并给予代码实现示例。
-
用户画像很重要,那你知道是怎么画出来的吗?
我们看过应该不下10篇关于用户画像的干货。但是依旧不知道应该怎么做一份用户画像出来。干货里告诉我们用户画像的价值、用户画像应该有的数据,用户画像应该包含的内容。好的,我都按大神们的教导收集好数据了。麻烦谁能告诉我到!底!这!些!数!据!怎!么!处!理!啊!喂!
-
大嘴巴漫谈数据挖掘:聚类分析后安排,细分群组有特征
如前所述,用户细分包括前后两部分,即前一部分因子分析完成后,还要对获得的公共因子进行随后的聚类分析。 聚类分析按照相似度进行划分类别,相似度一般由数据对象间的距离远近来衡量。基于确定的业务需求和分析目标,可以从用户基本属性、用户使用行为两个方面选择变量,随后便要进一步明确样本数据的形式。 样本数据中性别、年龄及收入是离散变量,而使用频度和价值贡献是连续变量,…
-
趣味数据挖掘系列8:农村中学并迁选址、K-平均聚类及蛋鸡悖论
本文从农村中学并迁选址问题出发,介绍了数据挖掘十大算法中位居第二的K-平均聚类,后又借用牛顿迭代原理,议论蛋鸡悖论。
-
趣味数据挖掘系列7:团拜会与鸡尾酒会上的聚类
用异于传统的方式,从讲课PPT上取些素材(这样比较快),来说明聚类的一些概念,为下篇做些铺垫,下篇将通过通俗的例子说明一个著名的方法。
-
12个关键词,告诉你到底什么是机器学习
随着人工智能(AI)技术对各行各业有越来越深入的影响,我们也更多地在新闻或报告中听到“机器学习”、“深度学习”、“增强学习”、“神经网络”等词汇,对于非专业人士来说略为玄幻。这篇文章为读者梳理了包括这些在内的12个关键词,希望帮助读者更清晰地理解,这项人工智能技术的内涵和潜能。
-
大嘴巴漫谈数据挖掘:差异运营聚用户,因子分析打前站
在产品成熟时期,产品的用户群规模和营收业绩稳定增长,提高用户忠诚,增强用户体验是这个时期的重要举措,准确及时地了解用户对产品的反馈,并以此制定针对性的改善方案,提供差异化的业务运营。 此处具体涉及用户细分和用户体验两个部分。用户细分即是将特征相似的用户归到同一个组,并对各个群进行特征刻画及分析。用户体验则是要量化现实的产品质量与用户期望之间的差距。 首先要对…