决策树
-
十大数据挖掘技术
数据挖掘通过从已知数据中推断出趋势和新信息来揭示商业智能和分析。它有助于企业解决问题、降低风险,并在一段时间内探索新的可能性。 以下是十大数据挖掘技术: 1)轨迹跟踪 模式追踪是数据挖掘的基本技术之一。它涉及识别和监控数据集中的趋势,以便对业务成果进行智能分析。对于企业而言,这个过程可能涉及从识别表…
-
机器学习常见算法分类汇总
本文为您总结一下常见的机器学习算法,以供您在工作和学习中参考。
-
人工智能的三个阶段:我们正从统计学习走向语境顺应
最近我读到了一本名叫《人工智能的三次浪潮(Three Waves of AI)》的书,作者是 DARPA 信息创新办公室主管 John Launchbury,他从一个更长远和宽广的视角,将人工智能的历史与未来划分为了三个阶段。
-
机器学习、深度学习面试知识点汇总
本文总结了一些秋招面试中会遇到的问题和一些重要的知识点,适合面试前突击和巩固基础知识。
-
机器学习入门必须了解的十大算法
哈佛商业评论称数据科学家是21世纪最性感的工作。所以,对于那些ML刚刚开始的人来说,这篇博客机器学习算法工程师需要知道的十大算法是非常有用的。
-
机器学习决策树算法学习笔记
机器学习决策树算法学习笔记 。
-
看完决策树相关的30道面试题,再也不怕遇到相关的问题了
决策树是机器学习和数据科学中最受欢迎的算法之一
-
关于决策树,你想了解的都在这里
决策树,随机森林,bagging,boosting的介绍以及背后的原理。
-
如何解读决策树和随机森林的内部工作机制?
随机森林在过去几年里得到了蓬勃的发展。它是一种非线性的基于树的模型,往往可以得到准确的结果。但是,随机森林的工作过程大都处于黑箱状态,往往难以解读和完全理解。近日,Pivotal Engineering Journal 网站发表了一篇文章,对随机森林的基础进行了深度解读。该文从随机森林的构造模块决策…
-
一次客户细分的实践
存量客户维系的本质是通过改善产品和服务来提升客户和企业之间的双赢关系。
-
用Python实现随机森林模型
多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。 随机森林是集成学习的一个子类,由于它依靠于策率树的合并。你可以在这找到用python实现集成学习的文档:Scikit学习文档。 随机决策树 我们知道随机森林是其他的模型聚合,但它聚合了什么类型模…
-
决策树分类预测过程可视化
numpy,pandas用于数值处理,DictVectorizer用于特征处理,graphviz用于模型可视化
-
基于CRISP的数据挖掘有哪些坑?双手奉上破解妙招
CRISP-DM是管理数据挖掘,预测分析和数据科学项目的领先方法。CRISP-DM是有效的,但许多分析项目忽视了该方法的关键要素。
-
机器学习算法一览
我们先带着大家过一遍传统机器学习算法,基本思想和用途。
-
用Python进行梯度提升算法的参数调整
提升算法(Boosting)在处理偏差-方差权衡的问题上表现优越,和装袋算法(Bagging)仅仅注重控制方差不同,提升算法在控制偏差和方差的问题上往往更加有效。在这里,我们提供一个对梯度提升算法的透彻理解,希望他能让你在处理这一问题上更加胸有成竹。