数据挖掘
-
大嘴巴漫谈数据挖掘:策略研究找趋势,目标用户要细分
在产品设计阶段,第一时期策略研究从宏观角度对外部环境和内部情况加以分析,重点关注市场、技术等方面的发展与变化趋势,辅以用户细分研究,以此从中明确产品未来开发的相关策略。 借助企业内部和外部资料的收集处理,趋势分析能够帮助产品经理及时准确地了解行业发展趋势,为进一步的分析调研提供重要的参考依据。研究结果一般包括用户日常生活、社会经济发展、技术产业变革以及宏观竞…
-
如何利用数据挖掘构建用户画像
微博作为最大的中文社交媒体,拥有数以“PB”(1024 TB)计的用户信息,从海量的用户信息中发掘每个用户的社交特性、潜在能力及兴趣等信息,是微博为用户提供更加人性化服务的基础。微博大数据经过近两年不断地调整、磨合、优化,针对社交媒体特性,研发构建了一整套完整的用户画像体系。该体系涵盖能力标签、兴趣标签、关系及亲密度、信用质量和自然属性五大部分,完整而全面地…
-
懂你的推荐算法,推荐逻辑是怎样的?
作为一个喜欢思考人生的美男子,我时常感慨,现在这个年代,人们上网获取信息的成本真的好低。智能手机,人手一台,打开3G就能上网,百度一搜,什么都有。当然百度上搜出来的大多数可能并不是你想要的,但这并不妨碍上面的论点成立。也正是因为成本太低,人们反而不愿意主动取获取信息,于是各种各样的推荐系统有了大展身手的机会。 推荐在生活中是一个再平常不过的事情,你失业了,有…
-
基于日志文件的数据挖掘机理分析与研究
介绍了数据挖掘的定义,分析了日志数据面临的挑战及对其进行挖掘的原因。讨论了日志数据挖掘的需求,归纳了对日志数据挖掘的具体内容,总结了日志数据挖掘的具体应用。该研究对加强企事业单位计算机信息系统安全具有较强的指导意义。
-
浙江移动大数据核心建模能力自我掌控之路
随着大数据时代的到来,当前情况开始发生变化。大数据带来的影响,不仅仅是指技术革命带来的的数据爆炸,更是思维方式的一次革命:“数据使流程更加透明,有助于推动管理的扁平化,提升管理效率”
-
大嘴巴漫谈数据挖掘:产品运营靠分析,设计商用八时期
大数据时代,数据的分析及挖掘在企业的经营过程及业务管理中,逐步发挥出越来越显著的作用。无论是在产品的构想、原型设计阶段,还是在测试、上市商用后,用户需求与市场竞争环境都在每时每刻地不断发生变化。在这种情况下,就要秉承以用户为中心的理念,综合技术、市场两种驱动能力,以科学严谨的方法,准确有效地收集并分析用户订购及使用产品的评价、动机及行为等信息,为产品运营、业…
-
如何构建用户画像模型(理论篇)
什么是用户画像 简而言之,用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。 举例来说,如果你经常购买一些玩偶玩具,那么电商网站即可根据玩具购买的情况替你打上标签“有孩子”,甚至还可以判断出你孩子大概的年龄,贴上“有5-10岁的孩…
-
数据挖掘必须要具备知识结构类型
一、概念/类描述 概念/类描述就是通过对某类对象关联数据的汇总,分析和比较,用汇总的简洁的精确的方式对此类对象的内涵进行描述,并概括这类对象的有关特征。概念描述分为:特征性描述和区别性描述。 特征性描述:是指从与某类对象相关的一组数据中提取出关于这些对象的共同特征。生成一个类的特征性描述只涉及该类对象中所有对象的同性。。 区别性描述:描述两个或者更多不同类对…
-
如何解决机器学习中数据不平衡问题
这几年来,机器学习和数据挖掘非常火热,它们逐渐为世界带来实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问题虽然不是最难的,但绝对是最重要的问题之一。 一、数据不平衡 在学术研究与教学中,很多算法都有一个基本假设,那就是数据分布是均匀的。当我们把这些算法直接应用于实际数据时,大多数情况下都无法取得理想的结果…
-
对比DOTA2,数据如何帮助英雄联盟的价值再放大一倍?
摘要:谈到中国电竞产业,LOL和DOTA2是两个无法回避的词。 基本上,DOTA2的玩家往往被LOL玩家嘲讽为“信仰粉”,而DOTA2玩家对这个名词并不太抗拒甚至引以为豪。但如果你对一个LOL玩家打“小学生”三个字的话,基本上这就等于是最高侮辱。这两款都脱胎于魔兽争霸自定义地图模式,在各方面相同点远多于不同点的MOBA类游戏,在用户自我定位上居然出现了如此巨…
-
基于你的点赞轨迹,数据挖掘可以探知你的性格秘密
摘要:没有人可以离开社交媒体(微信、微博、脸书等),朋友圈是维系外界最重要的通道之一,大多数人都是社交媒体的重度使用者。但是,有没有想过,我们在社交媒体上的一些无意识的行为(例如点赞、收藏、上传头像、状态更新、转帖等),其实很深层次的在暴露内心的一些秘密和隐私。 整理了一些社交媒体数据挖掘的结果,你会发现,大数据、行为痕迹和社交媒体的结合,展现了无限的机会和…
-
零售行业数据挖掘实践七步走
对于沃尔玛、华润万家、百佳等零售大超市而言,每天都有很多客户通过会员卡进行购买,不断积累了很多销售数据,如何利用这些数据,从数据中挖掘金矿,很值得每个商家去思考。尽管目前零售商有不少的IT系统去支撑企业常规的分析(如销售量、销售额、热销SKU等),但实际上还是未能从数据角度深入挖掘客户的价值,仅仅从经营分析的角度来满足了常规分析工作。 本文从个人的角度去谈一…
-
如何从零构建实时的个性化推荐系统?
现在网上到处都有推荐。亚马逊等主流电子商务网站根据它们的页面属性以各种形式向用户推荐产品。Mint.com之类的财务规划网站为用户提供很多建议,比如向用户推荐他们可能想要办理的信用卡,可以提供更好利率的银行。谷歌根据用户搜索历史记录的信息优化搜索结果,找到相关性更高的结果。 这些知名公司使用推荐提供情境化的、有相关性的用户体验,以提高转化率和用户满意度。这些…
-
商业智能BI三层结构:数据报表、数据分析、数据挖掘
经过几年的积累,大部分中大型的企事业单位已经建立了比较完善的CRM、ERP、OA等基础信息化系统。这些系统的统一特点都是:通过业务人员或者用户的操作,最终对数据库进行增加、修改、删除等操作。上述系统可统一称为OLTP(Online Transaction Process,在线事务处理),指的就是系统运行了一段时间以后,必然帮助企事业单位收集大量的历史数据。但…
-
用文本挖掘和机器学习洞悉数据
文本挖掘是对包含于自然语言文本中数据的分析。它可以帮组一个组织从基于文本的内容中获得潜在的有价值的业务洞察力,比如Word文档,邮件和社交媒体流中发布的帖子,如Facebook,Twitter,和LinkedIn。对于机器学习技术中信息检索和自然语言处理的应用而言,文本挖掘已经成为一个重要的研究领域。在某种意义上,它被定义为在无处不在的文本中发现知识的方式,…