机器学习算法
-
学习率设置技巧,使用学习率来提升我们的模型
选择学习率的简单方法是尝试一堆数字,然后使用看起来效果最好的那个,当训练不再能改善损失时,手动减少它。
-
机器学习深度学习面试问题汇总(提升你的面试成功率)
可怕的机器学习面试。在面试之前,你会觉得自己什么都懂,但是真的开始面试了,你发现你自己什么都不懂!
-
新手必看的Top10个机器学习算法
在机器学习中,有一个叫做“没有免费午餐”的定理。简而言之,它指出,没有一种算法对每一个问题都是最有效的,它尤其适用于监督学习(即预测建模)。
-
为机器学习模型选择正确的度量评估(第二部分)
分类的度量
-
为机器学习模型选择正确的度量评估(第一部分)
对不同的应用场景,需要不同的模型,对于不同的模型,需要不同的度量评估方式。
-
人工智能正在造成无法预料的麻烦
正如我们所知,人工智能将会改变世界。但对抗性数据(adversarial data)带来了一系列问题。
-
我是这样理解SVM,不需要繁杂公式的那种!(附代码)
支持向量机(Support Vector Machine,SVM)是众多监督学习方法中十分出色的一种,几乎所有讲述经典机器学习方法的教材都会介绍。关于SVM,流传着一个关于天使与魔鬼的故事。
-
机器学习其实只是“皇帝的新衣”
机器学习概念其实很简单,不要被听起来高大上的术语名称唬住了!实际上,ML 工程中最难的部分是安装包,其次是让人感到恐怖的数据集,接下来是永无止境修改代码设置的过程。通过本文,你也许会发现机器学习的概念可能是“皇帝的新衣”,它的本质比你想象得简单很多。
-
这个技术宅用大数据找对象,现在婚都结了
为什么不通过大数据寻找约会对象?
-
我数学不好、不爱刷题,如何入门机器学习?
作者 | Vincent Chen 译者 | Sambodhi Liu 编辑 | Vincent 微信公众号“AI 前线”(ID:ai-front) 人们并不完全清楚机器学习入门都需要什么样的数学水平,尤其是那些没在学校里研究过数学或统计学的人,更是迷茫。 我写本文的初衷是介绍构建机器学习产品或进行机器学习的学术研究所需的数学背景。我提到的这些建议,都是源于…
-
每天点击数100以内的极小量渠道,如何精准地投放游戏广告?
本文将介绍一种用于解决极小量渠道的,基于标签的精准投放算法——先知。
-
从吴军的“算法的油水就那么多”说起
“我们不懂IT技术,不懂大数据,不懂人工智能怎么办?”
-
选择适当的机器学习算法
机器学习是艺术和科学的结合。没有哪种机器学习算法能解决所有的问题。有几个因素能影响你选择机器学习算法的决定。
-
机器学习创企有最不可碰的九大陷阱
由于技术和工具的进步,机器学习培训项目比以往更容易执行。但是,要获得可靠的结果需要对数据科学和统计学原理有深入的了解,如此才能确保团队从一个坚不可摧的底层数据集开始,这边是成功的基础。
-
如何改进手上的机器学习模型
假如,你手头上正有一个机器学习的项目。你通过各种渠道手机数据,建立你自己的模型,并且得到了一些初期的结果。你发现,在你的测试集上你只有80%的正确率,这远远地低于你的预期。现在怎么办,你怎么来改进你的模型?