概率分布

  • 关于数据分析,6个重要的分布

    本文重点介绍分析中常用的六个重要分布,并解释它们的应用。

    2019-07-29
    0
  • 小白学统计(37)区间估计— —总体成数的置信区间

    在实践中,有许多情况要对总体成数进行估计。例如,通过样本合格品率估计总体的合格品率;通过样本的支持率估计总体的支持率等,这些都属于成数的估计问题。下面我们用p表示总体成数;用`p表示样本成数。对总体成数进行估计,就是用`p去估计p。当n为小样本时,`p为离散型变量,`p的概率分布为二项式分布。当n为大样本时,如果np>5,同时n(1-p)>5,则…

    2016-09-14
    0
  • 小白学统计(23)概率分布关系:正态分布作为泊松分布近似

    内容介绍: 正态分布能用于近似泊松分布。泊松分布的参数是μ=λ,可以证明λ增加,泊松分布接近μ=σ2=λ的正态分布。因此,只要λ足够大,就可以将泊松分布看作是μ=σ2=λ的正态分布,然后可以用标准正态分布方法计算面积(概率)值。因为这样得到的概率值只是泊松概率真实值的近似,所以正态分布的这种应用称为泊松分布的正态近似。如下图所示,λ增大,概率曲线越接近正态分…

    2016-09-01
    0
  • 小白学统计(22)概率分布关系:正态分布作为二项分布近似

    内容介绍: 计算二项分布的某个概率,需要对二项式展开(p+q)n的相关项相加,这是一个放缩的过程,而且对较大的n值或许得有一台计算机。上一篇(概率分布关系:泊松分布作为二项分布近似)指出,在一定条件下(当n≥20且q≤0.05时),可以使用泊松分布对二项概率进行近似。类似地,在一定条件下正态分布也是二项分布的一个良好近似,如下图所示,从而可用于计算二项分布的…

    2016-08-22
    0
  • 小白学统计(21)概率分布关系:泊松分布作为二项分布近似

    内容介绍: 泊松分布可用于近似二项分布,条件是:在二项试验中随机出现的成功是稀有事件,其中n“大”,p“小”。二项分布有两个参数n和p,并且均值为np。如果np在n增加而p减少的过程中保持不变,则当n趋近于无穷而p趋近0时,二项分布趋近均值为np的泊松分布。泊松分布概率函数可以由二项分布概率公式推导而出:离散型随机变量概率分布— —泊松分布。 那n的“大”和…

    2016-08-21
    1
  • 小白学统计(20)连续型随机变量概率分布——指数分布

    指数分布是连续型随机变量的另一种概率分布,它主要应用在随机事件之间发生的时间间隔的概率问题。例如,用它描述电子产品由使用到发生故障的时间的概率,描述两次电话之间时间间隔的概率,描述两位顾客到达商店间隔时间的概率等。前面讲述的泊松分布是描述某一区间内发生随机事件次数的概率分布,而指数分布是描述两次随机事件发生时间间隔的概率分布。因此,两种分布有着密切的关系,在…

    2016-08-20
    1
  • 小白学统计(19)连续型随机变量概率分布——正态分布

    正态概率分布是连续型随机变量概率分布中最重要的形式,它在实践中有着广泛的应用。在自然界和人类社会,有许多现象的分布都服从正态分布,如人的身高、体重、智商分数;某种产品的尺寸和质量;降雨量;学习成绩,特别是,在统计推断时,当样本的数量足够大时,许多统计数据都服从正态分布。因此,正态分布在抽样理论中占有重要地位。另外,正态分布还是其他连续型概率分布的极限分布,可…

    2016-08-19
    0
  • 小白学统计(18)连续型随机变量概率分布——平均概率分布

    在了解连续型随机变量的概率分布之间,我们需要先了解概率密度函数:由于连续型随机变量的数值在某一区间内有无限多个,因此无法一一列举,其概率分布只能通过一个函数来描述,这个函数称为概率密度函数,记作f(x)。 计算连续型随机变量的概率,首先需要找到该变量的概率密度函数,然后,通过积分求出f(x)与随机变量轴所夹面积,即为概率值,如下图所示: 图中阴影部份面积即是…

    2016-08-18
    0
  • 小白学统计(17)通俗归纳连续型概率分布

    两个注意点 1、离散型概率分布的概率函数称为概率质量函数,概率是散布在随机变量的各个离散值上的,所以二维坐标的纵轴为概率;连续型概率分布的概率函数被称为概率密度函数,二维坐标纵轴为密度(区别于离散型概率分布的概率),随机变量范围内任意点的概率为0(因为概率密度函数曲线下积分面积为0),随机变量取值区间的概率为曲线下积分面积。如下图所示: 2、对于任何连续型概…

    2016-08-17
    0
  • 小白学统计(16)离散型随机变量概率分布——超几何分布

    超几何分布是统计学上一种重要的离散概率分布。它描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的个数(不归还)。 例如:在有N个样本,其中m个是不合格的。超几何分布描述了在该N个样本中抽出n个,其中k个是不合格的的概率: 或者 上式可如此理解:Cmk表示所有在N个样本中抽出n个的方法数目。CNn表示在m个不合格样本中,抽出k个的方法数目。C(N-m)…

    2016-08-16
    0
  • 小白学统计(13)离散型随机变量概率分布——二项分布

    所谓概率分布,是指随机变量的取值与该取值发生概率所构成的分布。概率分布描述了一个随机变量的所有取值与其相应概率值之间的关系。它可以分为离散型概率分布和连续型概率分布(离散型及连续型随机变量分类见上一篇)。 离散型概率分布主要有以下三种: 二项分布 泊松分布 超集合概率分布 今天介绍的是离散型随机变量的二项分布。 在许多试验中,结果往往只有两个。例如:检查产品…

    2016-08-13
    1
  • 小白学统计(12)——通俗归纳离散型概率分布

    基础准备 随机变量回顾请见第8篇《随机变量的种类与描述》 概率回顾请见第5篇《推断理论基础——概率》 两个概念 随机变量分类:离散型随机变量和连续性随机变量。可以用“点”和“线”来类比理解。“点”(离散型)就是随机变量的取值是有限个或可列无限个。“线”(连续型)就是随机变量的取值在某一段区间上可以取无线多个。 概率分布:是指随机变量的取值与其概率所构成的分布…

    2016-08-12
    0
关注我们
关注我们
分享本页
返回顶部