线性回归
-
使用简单线性回归进行仪器校准? 正交回归方法更好
必须定期校准测量设备才能确保它们可以正常工作。尽管校准涉及到广泛的应用和场景,但目标很简单:确保设备测量符合标准。
-
机器学习入门必须了解的十大算法
哈佛商业评论称数据科学家是21世纪最性感的工作。所以,对于那些ML刚刚开始的人来说,这篇博客机器学习算法工程师需要知道的十大算法是非常有用的。
-
图解最常用的10个机器学习算法!
在机器学习领域,有种说法叫做“世上没有免费的午餐”,简而言之,它是指没有任何一种算法能在每个问题上都能有最好的效果,这个理论在监督学习方面体现得尤为重要。
-
机器学习的不同类型
有监督的和无监督的主要是由许多机器学习工程师和数据极客使用。 强化学习对于解决问题非常强大且复杂。 有监督学习 我们知道,机器学习以数据为输入,我们称这个数据为训练数据。 训练数据包括输入和标签(目标)。 什么是输入和标签(目标)例如,两个数字相加a=5,b=6结果=11,输入为5,6,目标为11。 我们首先用大量的训练数据(输入和目标)来训练模型。然后利用…
-
使用Tensorflow训练线性回归模型并进行预测
Tensorflow是Google开发的开源机器学习库。本篇文章我们将使用Tensorflow对线性回归模型进行训练,并使用模型对数据进行预测。
-
数据嗨客 | 第4期:逻辑回归
逻辑回归,也称LogisticRegression,主要区别于一般的线性回归模型。
-
数据嗨客 | 第2期:线性回归
简单来讲,回归就是通过数据学习数量关系,然后利用这个数量关系去做预测。
-
机器学习十大不可忽视项目
前言:那些流行的机器学习项目之所以受欢迎,一般是因为其提供了一种多数人需要的服务,或是因为它们是第一个(也许是最好的)针对特定用户提供服务的。那些最流行的项目包括Scikit-learn、TensorFlow、 Theano、MXNet 、Weka 等。根据个人使用的工作系统、深度学习目标不同,不同的人认为流行的项目可能会有些许差异。然而,这些项目共有的特性…
-
机器学习系列(4):从线性回归到逻辑回归
这一章,我们讨论广义线性回归模型的具体形式的另一种形式,逻辑回归(logistic regression)。
-
机器学习系列(2):线性回归
本章介绍用线性模型处理回归问题。
-
数据挖掘化功大法(15)——线性回归
线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。 在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多…